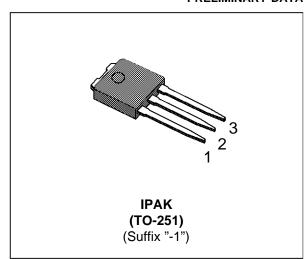


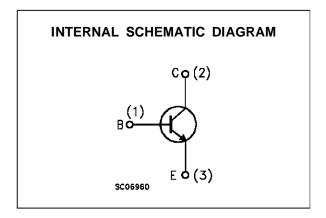
BULD26

MEDIUM VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

PRELIMINARY DATA

- SGS-THOMSON PREFERRED SALESTYPE
- MEDIUM VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED
- FULLY CHARACTERISED AT 125°C
- THROUGH-HOLE IPAK (TO-251) POWER PACKAGE IN TUBE (SUFFIX "-1")


APPLICATIONS


- ELECTRONIC BALLASTS FOR FLUORESCENT LIGHTING
- FLYBACK AND FORWARD SINGLE TRANSISTOR LOW POWER CONVERTERS

The BULD26 is manufactured using medium voltage Multi Epitaxial Planar technology for high switching speeds and medium voltage capability. It uses a Cellular Emitter structure with planar edge termination to enhance switching speeds while maintaining a wide RBSOA.

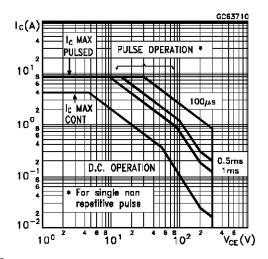
The BUL series is designed for use in lighting applications and low cost switch-mode power supplies.

ABSOLUTE MAXIMUM RATINGS

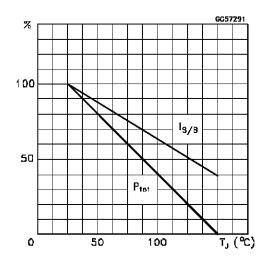
Symbol	Parameter	Value	Unit
Vces	Collector-Emitter Voltage (V _{BE} = 0V)	600	V
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	300	V
V _В	Emitter-Base Voltage (Ic = 0)	10	V
Ic	Collector Current	4	Α
Ісм	Collector Peak Current (tp < 5 ms)	8	Α
I _B	Base Current	2	Α
I _{BM}	Base Peak Current (t _p < 5 ms)	4	Α
P _{tot}	Total Dissipation at T _c = 25 °C	20	W
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

January 1995 1/6

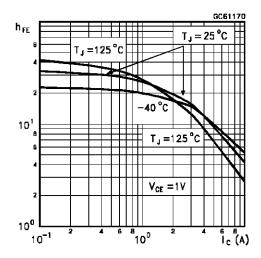
THERMAL DATA

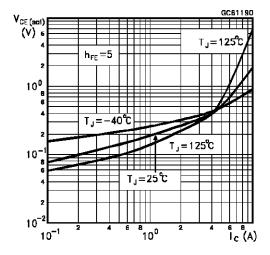

R _{thj-case}	Thermal Resistance Junction-case	Max	6.25	°C/W	
$R_{thj-amb}$	Thermal Resistance Junction-ambie	nt Max	100	°C/W	

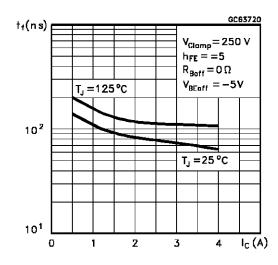
ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

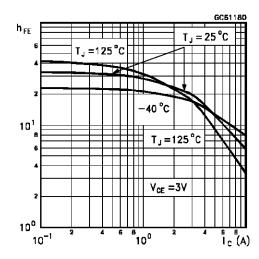

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Ices	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = 600 V V _{CE} = 600 V T _j = 125 °C			100 500	μA μA
I _{CEO}	Collector Cut-off Current (I _B = 0)	V _{CE} = 300 V			250	μА
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage	I _C = 100 mA L = 25 mH	300			V
V_{EBO}	Emitter-Base Voltage	I _E = 10 mA	10			V
V _{CE} (sat)*	Collector-Emitter Saturation Voltage	$I_C = 1 A I_B = 0.2 A$ $I_C = 2 A I_B = 0.4 A$ $I_C = 3 A I_B = 0.6 A$			0.5 0.7 1	V V V
V _{BE(sat)*}	Base-Emitter Saturation Voltage	$I_C = 1 A I_B = 0.2 A$ $I_C = 2 A I_B = 0.4 A$ $I_C = 3 A I_B = 0.6 A$			1.1 1.2 1.3	V V V
h _{FE} *	DC Current Gain	I _C = 10 mA	10 15		45	
t _s	INDUCTIVE LOAD Storage Time Fall Time			0.8 65	1.5 130	μs ns
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time	$\begin{array}{lll} I_{C} = 3 \; A & I_{B1} = 0.6 \; A \\ V_{BE(off)} = -5 \; V & R_{BB} = 0 \; \Omega \\ V_{CL} = 250 \; V & L = 200 \; \mu H \\ T_{j} = 125 \; ^{o}C \end{array}$		1.1 120		μs ns

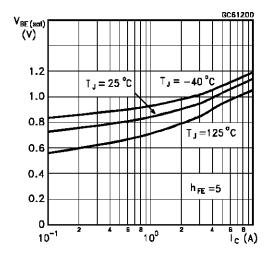
 $[\]ast$ Pulsed: Pulse duration = 300 $\mu s,$ duty cycle 1.5 %

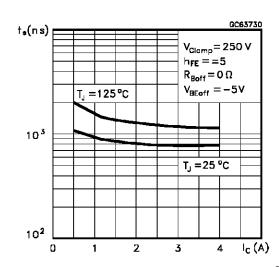

Safe Operating Areas


Derating Curves

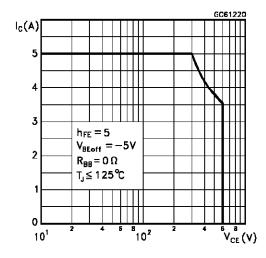

DC Current Gain


Collector-Emitter Saturation Voltage

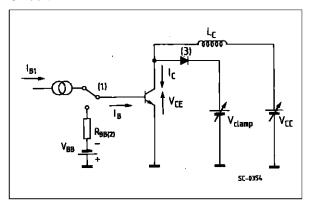

Inductive Fall Time


DC Current Gain

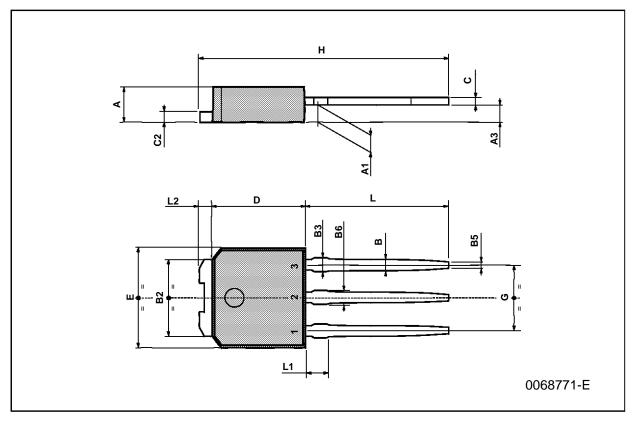
Base-Emitter Saturation Voltage



Inductive Storage Time



Reverse Biased SOA


RBSOA and Inductive Load Switching Test Circuit

- (1) Fast electronic switch
- (2) Non-inductive Resistor
- (3) Fast recovery rectifier

TO-251 (IPAK) MECHANICAL DATA

DIM.	mm			inch			
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	2.2		2.4	0.086		0.094	
A1	0.9		1.1	0.035		0.043	
A3	0.7		1.3	0.027		0.051	
В	0.64		0.9	0.025		0.031	
B2	5.2		5.4	0.204		0.212	
В3			0.85			0.033	
B5		0.3			0.012		
В6			0.95			0.037	
С	0.45		0.6	0.017		0.023	
C2	0.48		0.6	0.019		0.023	
D	6		6.2	0.236		0.244	
Е	6.4		6.6	0.252		0.260	
G	4.4		4.6	0.173		0.181	
Н	15.9		16.3	0.626		0.641	
L	9		9.4	0.354		0.370	
L1	0.8		1.2	0.031		0.047	
L2		0.8	1		0.031	0.039	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

